Vergelijkingen integreren
Veel problemen in de wiskunde, wetenschap en engineering vereisen dat er een
integraal van een functie wordt bepaald. Is de functie f(x) en wordt er
geïntegreerd tussen a en b, dan wordt de integraal genoteerd als:
De waarde I kan meetkundig geïnterpreteerd worden als de oppervlakte van een
interval dat begrensd wordt door de functie f(x), de x–ax en de grenzen x = a en
x = b (vooropgesteld dat f(x) niet negatief is over het integratie–interval).
De bewerking
variabele (
d_). De functie kan meer dan één variabele hebben.
werkt alleen met reële getallen.
b
=
I
a
f (x)
I
a
( FN) integreert de huidige vergelijking naar een bepaalde
f
(x)
dx
x
b
Vergelijkingen integreren
8
8–1